Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Bone Joint Res ; 13(4): 169-183, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618868

RESUMO

Aims: Rotator cuff (RC) injuries are characterized by tendon rupture, muscle atrophy, retraction, and fatty infiltration, which increase injury severity and jeopardize adequate tendon repair. Epigenetic drugs, such as histone deacetylase inhibitors (HDACis), possess the capacity to redefine the molecular signature of cells, and they may have the potential to inhibit the transformation of the fibro-adipogenic progenitors (FAPs) within the skeletal muscle into adipocyte-like cells, concurrently enhancing the myogenic potential of the satellite cells. Methods: HDACis were added to FAPs and satellite cell cultures isolated from mice. The HDACi vorinostat was additionally administered into a RC injury animal model. Histological analysis was carried out on the isolated supra- and infraspinatus muscles to assess vorinostat anti-muscle degeneration potential. Results: Vorinostat, a HDACi compound, blocked the adipogenic transformation of muscle-associated FAPs in culture, promoting myogenic progression of the satellite cells. Furthermore, it protected muscle from degeneration after acute RC in mice in the earlier muscle degenerative stage after tenotomy. Conclusion: The HDACi vorinostat may be a candidate to prevent early muscular degeneration after RC injury.

2.
Clin Cancer Res ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466644

RESUMO

BACKGROUND: BCMA-CARTs improve results obtained with conventional therapy in the treatment of relapsed/refractory multiple myeloma. However, the high demand and expensive costs associated with CART therapy might prove unsustainable for health systems. Academic CARTs could potentially overcome these issues. Moreover, response biomarkers and resistance mechanisms need to be identified and addressed to improve efficacy and patient selection. Here, we present clinical and ancillary results of the 60 patients treated with the academic BCMA-CART, ARI0002h, in the CARTBCMA-HCB-01 trial. METHODS: We collected apheresis, final product, peripheral blood and bone marrow samples before and after infusion. We assessed BCMA, T-cell subsets, CART kinetics and antibodies, B-cell aplasia, cytokines, and measurable residual disease by next generation flow cytometry, and correlated these to clinical outcomes. RESULTS: At cutoff date March 17th 2023, with a median follow-up of 23.1 months (95%CI 9.2-37.1), overall response rate in the first 3 months was 95% (95%CI 89.5-100); cytokine release syndrome (CRS) was observed in 90% of patients (5% grades≥3) and grade 1 immune effector cell-associated neurotoxicity syndrome was reported in 2 patients (3%). Median progression-free survival was 15.8 months (95%CI 11.5-22.4). Surface BCMA was not predictive of response or survival, but soluble BCMA correlated with worse clinical outcomes and CRS severity. Activation marker HLA-DR in the apheresis was associated with longer progression-free survival and increased exhaustion markers correlated with poorer outcomes. ARI0002h kinetics and loss of B-cell aplasia were not predictive of relapse. CONCLUSION: Despite deep and sustained responses achieved with ARI0002h, we identified several biomarkers that correlate with poor outcomes.

3.
Blood Cancer Discov ; : OF1-OF7, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38441243

RESUMO

SUMMARY: While the current approach to precursor hematologic conditions is to "watch and wait," this may change with the development of therapies that are safe and extend survival or delay the onset of symptomatic disease. The goal of future therapies in precursor hematologic conditions is to improve survival and prevent or delay the development of symptomatic disease while maximizing safety. Clinical trial considerations in this field include identifying an appropriate at-risk population, safety assessments, dose selection, primary and secondary trial endpoints including surrogate endpoints, control arms, and quality-of-life metrics, all of which may enable more precise benefit-risk assessment.

4.
Comput Biol Med ; 171: 108044, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335818

RESUMO

Engineered heart tissues (EHTs) built from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) showed promising results for cardiac function restoration following myocardial infarction. Nevertheless, human iPSC-CMs have longer action potential and lower cell-to-cell coupling than adult-like CMs. These immature electrophysiological properties favor arrhythmias due to the generation of electrophysiological gradients when hiPSC-CMs are injected in the cardiac tissue. Culturing hiPSC-CMs on three-dimensional (3D) scaffolds can promote their maturation and influence their alignment. However, it is still uncertain how on-scaffold culturing influences the overall electrophysiology of the in vitro and implanted EHTs, as it requires expensive and time consuming experimentation. Here, we computationally investigated the impact of the scaffold design on the EHT electrical depolarization and repolarization before and after engraftment on infarcted tissue. We first acquired and processed electrical recordings from in vitro EHTs, which we used to calibrate the modeling and simulation of in silico EHTs to replicate experimental outcomes. Next, we built in silico EHT models for a range of scaffold pore sizes, shapes (square, rectangular, auxetic, hexagonal) and thicknesses. In this setup, we found that scaffolds made of small (0.2 mm2), elongated (30° half-angle) hexagons led to faster EHT activation and better mimicked the cardiac anisotropy. The scaffold thickness had a marginal role on the not engrafted EHT electrophysiology. Moreover, EHT engraftment on infarcted tissue showed that the EHT conductivity should be at least 5% of that in healthy tissue for bidirectional EHT-myocardium electrical propagation. For conductivities above such threshold, the scaffold made of small elongated hexagons led to the lowest activation time (AT) in the coupled EHT-myocardium. If the EHT conductivity was further increased and the hiPSC-CMs were uniformly oriented parallel to the epicardial cells, the total AT and the repolarization time gradient decreased substantially, thus minimizing the likelihood for arrhythmias after EHT transplantation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Engenharia Tecidual/métodos , Miócitos Cardíacos/fisiologia , Miocárdio , Arritmias Cardíacas
5.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301653

RESUMO

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Assuntos
Linfócitos B , Tonsila Palatina , Humanos , Adulto , Linfócitos B/metabolismo
6.
Biomimetics (Basel) ; 9(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38248597

RESUMO

Oxidative stress is characterized by an increase in reactive oxygen species or a decrease in antioxidants in the body. This imbalance leads to detrimental effects, including inflammation and multiple chronic diseases, ranging from impaired wound healing to highly impacting pathologies in the neural and cardiovascular systems, or the bone, amongst others. However, supplying compounds with antioxidant activity is hampered by their low bioavailability. The development of biomaterials with antioxidant capacity is poised to overcome this roadblock. Moreover, in the treatment of chronic inflammation, material-based strategies would allow the controlled and targeted release of antioxidants into the affected tissue. In this review, we revise the main causes and effects of oxidative stress, and survey antioxidant biomaterials used for the treatment of chronic wounds, neurodegenerative diseases, cardiovascular diseases (focusing on cardiac infarction, myocardial ischemia-reperfusion injury and atherosclerosis) and osteoporosis. We anticipate that these developments will lead to the emergence of new technologies for tissue engineering, control of oxidative stress and prevention of diseases associated with oxidative stress.

7.
ACS Biomater Sci Eng ; 10(2): 987-997, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38234159

RESUMO

A combination of human-induced pluripotent stem cells (hiPSCs) and 3D microtissue culture techniques allows the generation of models that recapitulate the cardiac microenvironment for preclinical research of new treatments. In particular, spheroids represent the simplest approach to culture cells in 3D and generate gradients of cellular access to the media, mimicking the effects of an ischemic event. However, previous models required incubation under low oxygen conditions or deprived nutrient media to recreate ischemia. Here, we describe the generation of large spheroids (i.e., larger than 500 µm diameter) that self-induce an ischemic core. Spheroids were generated by coculture of cardiomyocytes derived from hiPSCs (hiPSC-CMs) and primary human cardiac fibroblast (hCF). In the proper medium, cells formed aggregates that generated an ischemic core 2 days after seeding. Spheroids also showed spontaneous cellular reorganization after 10 days, with hiPSC-CMs located at the center and surrounded by hCFs. This led to an increase in microtissue stiffness, characterized by the implementation of a constriction assay. All in all, these phenomena are hints of the fibrotic tissue remodeling secondary to a cardiac ischemic event, thus demonstrating the suitability of these spheroids for the modeling of human cardiac ischemia and its potential application for new treatments and drug research.


Assuntos
Isquemia Miocárdica , Miócitos Cardíacos , Humanos , Constrição , Células Cultivadas , Isquemia
8.
Cell Death Discov ; 10(1): 1, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172127

RESUMO

Alterations in the epigenetic machinery in both tumor and immune cells contribute to bladder cancer (BC) development, constituting a promising target as an alternative therapeutic option. Here, we have explored the effects of a novel histone deacetylase (HDAC) inhibitor CM-1758, alone or in combination with immune checkpoint inhibitors (ICI) in BC. We determined the antitumor effects of CM-1758 in various BC cell lines together with the induction of broad transcriptional changes, with focus on the epigenetic regulation of PD-L1. Using an immunocompetent syngeneic mouse model of metastatic BC, we studied the effects of CM-1758 alone or in combination with anti-PD-L1 not only on tumor cells, but also in the tumor microenvironment. In vitro, we found that CM-1758 has cytotoxic and cytostatic effects either by inducing apoptosis or cell cycle arrest in BC cells at low micromolar levels. PD-L1 is epigenetically regulated by histone acetylation marks and is induced after treatment with CM-1758. We also observed that treatment with CM-1758 led to an important delay in tumor growth and a higher CD8 + T cell tumor infiltration. Moreover, anti-PD-L1 alone or in combination with CM-1758 reprogramed macrophage differentiation towards a M1-like polarization state and increased of pro-inflammatory cytokines systemically, yielding potential further antitumor effects. Our results suggest the possibility of combining HDAC inhibitors with immunotherapies for the management of advanced metastatic BC.

9.
Nanoscale Adv ; 5(24): 6830-6836, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38059035

RESUMO

In the development of therapeutic extracellular vesicles (EVs), drug encapsulation efficiencies are significantly lower when compared with synthetic nanomedicines. This is due to the hierarchical structure of the EV membrane and the physicochemical properties of the candidate drug (molecular weight, hydrophilicity, lipophilicity, and so on). As a proof of concept, here we demonstrated the importance of drug compartmentalization in EVs as an additional parameter affecting the therapeutic potential of drug-loaded EVs. In human adipose mesenchymal stem cell (hADSC) derived EVs, we performed a comparative drug loading analysis using two formulations of the same chemotherapeutic molecule - free doxorubicin (DOX) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) lipid-conjugated doxorubicin (L-DOX) - to enhance the intracellular uptake and therapeutic efficacy. By nano surface energy transfer (NSET) and molecular simulation techniques, along with cryo-TEM analysis, we confirmed the differential compartmentalization of these two molecules in hADSC EVs. L-DOX was preferentially adsorbed onto the surface of the EV, due to its higher lipophilicity, whereas free DOX was mostly encapsulated within the EV core. Also, the L-DOX loaded EV (LDOX@EV) returned an almost three-fold higher DOX content as compared to the free DOX loaded EV (DOX@EV), for a given input mass of drug. Based on the cellular investigations, L-DOX@EV showed higher cell internalization than DOX@EV. Also, in comparison with free L-DOX, the magnitude of therapeutic potential enhancement displayed by the surface compartmentalized L-DOX@EV is highly promising and can be exploited to overcome the sensitivity of many potential drugs, which are impermeable in nature. Overall, this study illustrates the significance of drug compartmentalization in EVs and how this could affect intracellular delivery, loading efficiency, and therapeutic effect. This will further lay the foundation for the future systematic investigation of EV-based biotherapeutic delivery platforms for personalized medicine.

10.
Biomed Pharmacother ; 169: 115882, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37984300

RESUMO

An archetypal anti-inflammatory compound against cytokine storm would inhibit it without suppressing the innate immune response. AG5, an anti-inflammatory compound, has been developed as synthetic derivative of andrographolide, which is highly absorbable and presents low toxicity. We found that the mechanism of action of AG5 is through the inhibition of caspase-1. Interestingly, we show with in vitro generated human monocyte derived dendritic cells that AG5 preserves innate immune response. AG5 minimizes inflammatory response in a mouse model of lipopolysaccharide (LPS)-induced lung injury and exhibits in vivo anti-inflammatory efficacy in the SARS-CoV-2-infected mouse model. AG5 opens up a new class of anti-inflammatories, since contrary to NSAIDs, AG5 is able to inhibit the cytokine storm, like dexamethasone, but, unlike corticosteroids, preserves adequately the innate immunity. This is critical at the early stages of any naïve infection, but particularly in SARS-CoV-2 infections. Furthermore, AG5 showed interesting antiviral activity against SARS-CoV-2 in humanized mice.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Humanos , Camundongos , Animais , Imunidade Inata , SARS-CoV-2 , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico
11.
Dev Cell ; 58(24): 2881-2895.e7, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37967560

RESUMO

Generating organs from stem cells through blastocyst complementation is a promising approach to meet the clinical need for transplants. In order to generate rejection-free organs, complementation of both parenchymal and vascular cells must be achieved, as endothelial cells play a key role in graft rejection. Here, we used a lineage-specific cell ablation system to produce mouse embryos unable to form both the cardiac and vascular systems. By mouse intraspecies blastocyst complementation, we rescued heart and vascular system development separately and in combination, obtaining complemented hearts with cardiomyocytes and endothelial cells of exogenous origin. Complemented chimeras were viable and reached adult stage, showing normal cardiac function and no signs of histopathological defects in the heart. Furthermore, we implemented the cell ablation system for rat-to-mouse blastocyst complementation, obtaining xenogeneic hearts whose cardiomyocytes were completely of rat origin. These results represent an advance in the experimentation towards the in vivo generation of transplantable organs.


Assuntos
Sistema Cardiovascular , Coração , Células-Tronco Pluripotentes , Animais , Camundongos , Ratos , Blastocisto , Células Endoteliais , Miócitos Cardíacos , Coração/embriologia , Sistema Cardiovascular/embriologia
12.
J. physiol. biochem ; 79(4): 787–797, nov. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-227552

RESUMO

Cardiovascular diseases and the ischemic heart disease specifically constitute the main cause of death worldwide. The ischemic heart disease may lead to myocardial infarction, which in turn triggers numerous mechanisms and pathways involved in cardiac repair and remodeling. Our goal in the present study was to characterize the effect of the NADPH oxidase 5 (NOX5) endothelial expression in healthy and infarcted knock-in mice on diverse signaling pathways. The mechanisms studied in the heart of mice were the redox pathway, metalloproteinases and collagen pathway, signaling factors such as NFκB, AKT or Bcl-2, and adhesion molecules among others. Recent studies support that NOX5 expression in animal models can modify the environment and predisposes organ response to harmful stimuli prior to pathological processes. We found many alterations in the mRNA expression of components involved in cardiac fibrosis as collagen type I or TGF-β and in key players of cardiac apoptosis such as AKT, Bcl-2, or p53. In the heart of NOX5-expressing mice after chronic myocardial infarction, gene alterations were predominant in the redox pathway (NOX2, NOX4, p22phox, or SOD1), but we also found alterations in VCAM-1 and β-MHC expression. Our results suggest that NOX5 endothelial expression in mice preconditions the heart, and we propose that NOX5 has a cardioprotective role. The correlation studies performed between echocardiographic parameters and cardiac mRNA expression supported NOX5 protective action. (AU)


Assuntos
Animais , Camundongos , Infarto do Miocárdio/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro
13.
Front Immunol ; 14: 1270843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795087

RESUMO

Despite the potential of CAR-T therapies for hematological malignancies, their efficacy in patients with relapse and refractory Acute Myeloid Leukemia has been limited. The aim of our study has been to develop and manufacture a CAR-T cell product that addresses some of the current limitations. We initially compared the phenotype of T cells from AML patients and healthy young and elderly controls. This analysis showed that T cells from AML patients displayed a predominantly effector phenotype, with increased expression of activation (CD69 and HLA-DR) and exhaustion markers (PD1 and LAG3), in contrast to the enriched memory phenotype observed in healthy donors. This differentiated and more exhausted phenotype was also observed, and corroborated by transcriptomic analyses, in CAR-T cells from AML patients engineered with an optimized CAR construct targeting CD33, resulting in a decreased in vivo antitumoral efficacy evaluated in xenograft AML models. To overcome some of these limitations we have combined CRISPR-based genome editing technologies with virus-free gene-transfer strategies using Sleeping Beauty transposons, to generate CAR-T cells depleted of HLA-I and TCR complexes (HLA-IKO/TCRKO CAR-T cells) for allogeneic approaches. Our optimized protocol allows one-step generation of edited CAR-T cells that show a similar phenotypic profile to non-edited CAR-T cells, with equivalent in vitro and in vivo antitumoral efficacy. Moreover, genomic analysis of edited CAR-T cells revealed a safe integration profile of the vector, with no preferences for specific genomic regions, with highly specific editing of the HLA-I and TCR, without significant off-target sites. Finally, the production of edited CAR-T cells at a larger scale allowed the generation and selection of enough HLA-IKO/TCRKO CAR-T cells that would be compatible with clinical applications. In summary, our results demonstrate that CAR-T cells from AML patients, although functional, present phenotypic and functional features that could compromise their antitumoral efficacy, compared to CAR-T cells from healthy donors. The combination of CRISPR technologies with transposon-based delivery strategies allows the generation of HLA-IKO/TCRKO CAR-T cells, compatible with allogeneic approaches, that would represent a promising option for AML treatment.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Animais , Humanos , Idoso , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Imunoterapia Adotiva/métodos , Modelos Animais de Doenças
14.
Cells ; 12(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37759522

RESUMO

Oxidative stress-induced myocardial apoptosis and necrosis are critically involved in ischemic infarction, and several sources of extracellular vesicles appear to be enriched in therapeutic activities. The central objective was to identify and validate the differential exosome miRNA repertoire in human cardiac progenitor cells (CPC). CPC exosomes were first analyzed by LC-MS/MS and compared by RNAseq with exomes of human mesenchymal stromal cells and human fibroblasts to define their differential exosome miRNA repertoire (exo-miRSEL). Proteomics demonstrated a highly significant representation of cardiovascular development functions and angiogenesis in CPC exosomes, and RNAseq analysis yielded about 350 different miRNAs; among the exo-miRSEL population, miR-935 was confirmed as the miRNA most significantly up-regulated; interestingly, miR-935 was also found to be preferentially expressed in mouse primary cardiac Bmi1+high CPC, a population highly enriched in progenitors. Furthermore, it was found that transfection of an miR-935 antagomiR combined with oxidative stress treatment provoked a significant increment both in apoptotic and necrotic populations, whereas transfection of a miR-935 mimic did not modify the response. Conclusion. miR-935 is a highly differentially expressed miRNA in exo-miRSEL, and its expression reduction promotes oxidative stress-associated apoptosis. MiR-935, together with other exosomal miRNA members, could counteract oxidative stress-related apoptosis, at least in CPC surroundings.

15.
Stem Cell Res ; 71: 103189, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37660554

RESUMO

Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is a life-threatening disease caused by the abnormal production of misfolded TTR protein by liver cells, which is then released systemically. Its amyloid deposition in the heart is linked to cardiac toxicity and progression toward heart failure. A human induced pluripotent stem cell (iPSC) line was generated from peripheral blood mononuclear cells (PBMCs) from a patient suffering familial transthyretin amyloid cardiomyopathy carrying a c.128G>A (p.Ser43Asn) mutation in the TTR gene. This iPSC line offers a useful resource to study the disease pathophysiology and a cell-based model for therapeutic discovery.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Humanos , Pré-Albumina/genética , Leucócitos Mononucleares , Mutação/genética , Cardiomiopatias/genética
16.
NPJ Regen Med ; 8(1): 54, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773177

RESUMO

During bone regeneration, the periosteum acts as a carrier for key regenerative cues, delivering osteochondroprogenitor cells and crucial growth factors to the injured bone. We developed a biocompatible, 3D polycaprolactone (PCL) melt electro-written membrane to act as a mimetic periosteum. Poly (ethyl acrylate) coating of the PCL membrane allowed functionalization, mediated by fibronectin and low dose recombinant human BMP-2 (rhBMP-2) (10-25 µg/ml), resulting in efficient, sustained osteoinduction in vitro. In vivo, rhBMP-2 functionalized mimetic periosteum demonstrated regenerative potential in the treatment of rat critical-size femoral defects with highly efficient healing and functional recovery (80%-93%). Mimetic periosteum has also proven to be efficient for cell delivery, as observed through the migration of transplanted periosteum-derived mesenchymal cells to the bone defect and their survival. Ultimately, mimetic periosteum demonstrated its ability to deliver key stem cells and morphogens to an injured site, exposing a therapeutic and translational potential in vivo when combined with unprecedentedly low rhBMP-2 doses.

17.
Nat Genet ; 55(9): 1542-1554, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580596

RESUMO

Cellular differentiation requires extensive alterations in chromatin structure and function, which is elicited by the coordinated action of chromatin and transcription factors. By contrast with transcription factors, the roles of chromatin factors in differentiation have not been systematically characterized. Here, we combine bulk ex vivo and single-cell in vivo CRISPR screens to characterize the role of chromatin factor families in hematopoiesis. We uncover marked lineage specificities for 142 chromatin factors, revealing functional diversity among related chromatin factors (i.e. barrier-to-autointegration factor subcomplexes) as well as shared roles for unrelated repressive complexes that restrain excessive myeloid differentiation. Using epigenetic profiling, we identify functional interactions between lineage-determining transcription factors and several chromatin factors that explain their lineage dependencies. Studying chromatin factor functions in leukemia, we show that leukemia cells engage homeostatic chromatin factor functions to block differentiation, generating specific chromatin factor-transcription factor interactions that might be therapeutically targeted. Together, our work elucidates the lineage-determining properties of chromatin factors across normal and malignant hematopoiesis.


Assuntos
Cromatina , Leucemia , Humanos , Cromatina/genética , Linhagem da Célula/genética , Hematopoese/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética
18.
J Control Release ; 361: 130-146, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532145

RESUMO

RNA-based therapies, and siRNAs in particular, have attractive therapeutic potential for cancer treatment due to their ability to silence genes that are imperative for tumor progression. To be effective and solve issues related to their poor half-life and poor pharmacokinetic properties, siRNAs require adequate drug delivery systems that protect them from degradation and allow intracellular delivery. Among the various delivery vehicles available, lipid nanoparticles have emerged as the leading choice. These nanoparticles consist of cholesterol, phospholipids, PEG-lipids and most importantly ionizable cationic lipids. These ionizable lipids enable the binding of negatively charged siRNA, resulting in the formation of stable and neutral lipid nanoparticles with exceptionally high encapsulation efficiency. Lipid nanoparticles have demonstrated their effectiveness and versatility in delivering not only siRNAs but also multiple RNA molecules, contributing to their remarkable success. Furthermore, the advancement of efficient manufacturing techniques such as microfluidics, enables the rapid mixing of two miscible solvents without the need for shear forces. This facilitates the reproducible production of lipid nanoparticles and holds enormous potential for scalability. This is shown by the increasing number of preclinical and clinical trials evaluating the potential use of siRNA-LNPs for the treatment of solid and hematological tumors as well as in cancer immunotherapy. In this review, we provide an overview of the progress made on siRNA-LNP development for cancer treatment and outline the current preclinical and clinical landscape in this area. Finally, the translational challenges required to bring siRNA-LNPs further into the clinic are also discussed.


Assuntos
Nanopartículas , Neoplasias , RNA Interferente Pequeno , Lipossomos , Nanopartículas/química , Fosfolipídeos , Neoplasias/genética , Neoplasias/terapia
19.
J Physiol Biochem ; 79(4): 787-797, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37566320

RESUMO

Cardiovascular diseases and the ischemic heart disease specifically constitute the main cause of death worldwide. The ischemic heart disease may lead to myocardial infarction, which in turn triggers numerous mechanisms and pathways involved in cardiac repair and remodeling. Our goal in the present study was to characterize the effect of the NADPH oxidase 5 (NOX5) endothelial expression in healthy and infarcted knock-in mice on diverse signaling pathways. The mechanisms studied in the heart of mice were the redox pathway, metalloproteinases and collagen pathway, signaling factors such as NFκB, AKT or Bcl-2, and adhesion molecules among others. Recent studies support that NOX5 expression in animal models can modify the environment and predisposes organ response to harmful stimuli prior to pathological processes. We found many alterations in the mRNA expression of components involved in cardiac fibrosis as collagen type I or TGF-ß and in key players of cardiac apoptosis such as AKT, Bcl-2, or p53. In the heart of NOX5-expressing mice after chronic myocardial infarction, gene alterations were predominant in the redox pathway (NOX2, NOX4, p22phox, or SOD1), but we also found alterations in VCAM-1 and ß-MHC expression. Our results suggest that NOX5 endothelial expression in mice preconditions the heart, and we propose that NOX5 has a cardioprotective role. The correlation studies performed between echocardiographic parameters and cardiac mRNA expression supported NOX5 protective action.


Assuntos
Infarto do Miocárdio , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Infarto do Miocárdio/genética , RNA Mensageiro , Proteínas Proto-Oncogênicas c-bcl-2
20.
Artigo em Inglês | MEDLINE | ID: mdl-37566441

RESUMO

Ischemic heart disease is one of the leading causes of death worldwide. The efficient delivery of therapeutic growth factors could counteract the adverse prognosis of post-myocardial infarction (post-MI). In this study, a collagen hydrogel that is able to load and appropriately deliver pro-angiogenic stromal cell-derived factor 1 (SDF1) was physically coupled with a compact collagen membrane in order to provide the suture strength required for surgical implantation. This bilayer collagen-on-collagen scaffold (bCS) showed the suitable physicochemical properties that are needed for efficient implantation, and the scaffold was able to deliver therapeutic growth factors after MI. In vitro collagen matrix biodegradation led to a sustained SDF1 release and a lack of cytotoxicity in the relevant cell cultures. In vivo intervention in a rat subacute MI model resulted in the full integration of the scaffold into the heart after implantation and biocompatibility with the tissue, with a prevalence of anti-inflammatory and pro-angiogenic macrophages, as well as evidence of revascularization and improved cardiac function after 60 days. Moreover, the beneficial effect of the released SDF1 on heart remodeling was confirmed by a significant reduction in cardiac tissue stiffness. Our findings demonstrate that this multimodal scaffold is a desirable matrix that can be used as a drug delivery system and a scaffolding material to promote functional recovery after MI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...